Перовскиты могут удвоить КПД солнечных батарей за счет горячих носителей

Перовскиты могут удвоить КПД солнечных батарей за счет горячих носителей

Опубликовано: 2017-04-13 Американские исследователи показали, что в солнечных элементах на основе перовскитов носители заряда, обладающие избыточной энергией, способны преодолевать значительное расстояние, прежде чем рассеют ее в виде тепла. Это означает, что реализовать фотоэлектрические элементы на горячих носителях, для которых теоретический предел КПД вдвое выше, чем у обычных кремниевых, на практике вполне возможно. Исследование опубликовано в журнале Science.

В самых распространенных на сегодняшний день солнечных элементах, использующих в качестве полупроводника кремний, теоретически возможный коэффициент полезного действия едва превышает 30 процентов. Это связано с тем, что кремниевые элементы способны использовать спектр солнечного света только частично. Фотоны, обладающие энергией ниже пороговой, просто не поглощаются, а обладающие слишком высокой приводят к образованию в фотоэлементе так называемых горячих носителей заряда (например, электронов). Время жизни последних составляет около пикосекунды (10-12 секунды), потом они «остывают», то есть рассеивают избыточную энергию в виде тепла. Если бы горячие носители удавалось собирать, это повысило бы теоретический предел КПД до 66 процентов, то есть вдвое. Несмотря на то что в некоторых экспериментах небольшое сохранение энергии удавалось наблюдать, элементы на горячих носителях пока остаются скорее гипотетическими.

Ученые из Университета Пердью и Национальной лаборатории возобновляемой энергетики (США) внесли вклад в изучение нового перспективного класса фотоэлектрических элементов на основе перовскитов и продемонстрировали, что в таких элементах горячие носители не только обладают повышенным временем жизни (до 100 пикосекунд), но и способны «пробегать» значительные дистанции в несколько сотен нанометров (что сопоставимо с толщиной слоя полупроводника).

Металлорганические перовскиты получили свое название благодаря кристаллической структуре. Она по сути повторяет структуру природного минерала — перовскита, или титаната кальция. Химически они представляют собой смешанные галогениды свинца и органических катионов. Авторы работы использовали распространенный перовскит на основе иодида свинца и метиламмония. Исходя из того, что в перовскитах время жизни горячих носителей существенно увеличено по сравнению с другими полупроводниками, авторы решили выяснить, на какое расстояние могут переноситься горячие носители за время их остывания. С использованием ультраскоростной микроскопии исследователям удалось непосредственно пронаблюдать транспорт горячих носителей в тонких пленках перовскита с высоким пространственным и временным разрешением. 

В настоящее время в быту используются в основном кремниевые фотоэлементы, реальный КПД которых составляет 10–20 процентов. Элементы на основе перовскитов появились менее 10 лет назад и сразу вызвали к себе заслуженный интерес (о них мы уже писали ранее). КПД таких элементов быстро увеличивается и практически доведен до 25 процентов, что сопоставимо с лучшими образцами кремниевых фотоэлементов. К тому же они очень просты в производстве. Несмотря на технологический успех, физические принципы работы перовскитовых элементов относительно мало изучены, поэтому обсуждаемая работа ученых из США вносит важный вклад в фундаментальные основы фотовольтаики и, конечно, влечет за собой перспективу дальнейшего увеличения КПД солнечных элементов. 

Дарья Спасская

N+1